Search results for "semilinear elliptic equation"

showing 3 items of 3 documents

Two positive solutions for a Dirichlet problem with the (p,q)‐Laplacian

2020

The aim of this paper is to prove the existence of two solutions for a nonlinear elliptic problem involving the (p,q) -Laplacian operator. The solutions are obtained by using variational methods and critical points theorems. The positivity of the solutions is shown by applying a generalized version of the strong maximum principle.

Dirichlet problemPure mathematicsmultiple solutionSettore MAT/05 - Analisi MatematicaGeneral Mathematicscritical pointsemilinear elliptic equationLaplace operator(pq)-LaplacianCritical point (mathematics)Dirichlet problemMathematicsMathematische Nachrichten
researchProduct

Symmetrization for singular semilinear elliptic equations

2012

In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.

Dirichlet problemSharp a priori estimatesSemilinear elliptic equationsMathematics::Operator AlgebrasApplied MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEsComparison resultsSymmetrizationGeodetic datumElliptic curveSettore MAT/05 - Analisi MatematicaMathematics::K-Theory and HomologySymmetrizationMathematics
researchProduct

Determining an unbounded potential for an elliptic equation with a power type nonlinearity

2022

In this article we focus on inverse problems for a semilinear elliptic equation. We show that a potential $q$ in $L^{n/2+\varepsilon}$, $\varepsilon>0$, can be determined from the full and partial Dirichlet-to-Neumann map. This extends the results from [M. Lassas, T. Liimatainen, Y.-H. Lin, and M. Salo, Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations, Rev. Mat. Iberoam. (2021)] where this is shown for H\"older continuous potentials. Also we show that when the Dirichlet-to-Neumann map is restricted to one point on the boundary, it is possible to determine a potential $q$ in $L^{n+\varepsilon}$. The authors of arXiv:2202.0…

Mathematics - Analysis of PDEsApplied Mathematics35R30 35J25 35J61FOS: Mathematicsinverse problemyhtälötpartial datasemilinear elliptic equationhigher order linearizationinversio-ongelmatAnalysisAnalysis of PDEs (math.AP)
researchProduct